303 research outputs found

    Variables in the Southern Polar Region Evryscope 2016 Dataset

    Get PDF
    The regions around the celestial poles offer the ability to find and characterize long-term variables from ground-based observatories. We used multi-year Evryscope data to search for high-amplitude (~5% or greater) variable objects among 160,000 bright stars (Mv < 14.5) near the South Celestial Pole. We developed a machine learning based spectral classifier to identify eclipse and transit candidates with M-dwarf or K-dwarf host stars - and potential low-mass secondary stars or gas giant planets. The large amplitude transit signals from low-mass companions of smaller dwarf host stars lessens the photometric precision and systematics removal requirements necessary for detection, and increases the discoveries from long-term observations with modest light curve precision. The Evryscope is a robotic telescope array that observes the Southern sky continuously at 2-minute cadence, searching for stellar variability, transients, transits around exotic stars and other observationally challenging astrophysical variables. In this study, covering all stars 9 < Mv < 14.5, in declinations -75 to -90 deg, we recover 346 known variables and discover 303 new variables, including 168 eclipsing binaries. We characterize the discoveries and provide the amplitudes, periods, and variability type. A 1.7 Jupiter radius planet candidate with a late K-dwarf primary was found and the transit signal was verified with the PROMPT telescope network. Further followup revealed this object to be a likely grazing eclipsing binary system with nearly identical primary and secondary K5 stars. Radial velocity measurements from the Goodman Spectrograph on the 4.1 meter SOAR telescope of the likely-lowest-mass targets reveal that six of the eclipsing binary discoveries are low-mass (.06 - .37 solar mass) secondaries with K-dwarf primaries, strong candidates for precision mass-radius measurements.Comment: 32 pages, 17 figures, accepted to PAS

    A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy: II. Swope Telescope Spectroscopy of M Giant Stars in the Dynamically Cold Sagittarius Tidal Stream

    Get PDF
    We present moderate resolution (~6 km/s) spectroscopy of 284 M giant candidates selected from the Two Micron All Sky Survey photometry. Radial velocities (RVs) are presented for stars mainly in the south, with a number having positions consistent with association to the trailing tidal tail of the Sagittarius (Sgr) dwarf galaxy. The latter show a clear RV trend with orbital longitude, as expected from models of the orbit and destruction of Sgr. A minimum 8 kpc width of the trailing stream about the Sgr orbital midplane is implied by verified RV members. The coldness of this stream (dispersion ~10 km/s) provides upper limits on the combined contributions of stream heating by a lumpy Galactic halo and the intrinsic dispersion of released stars, which is a function of the Sgr core mass. The Sgr trailing arm is consistent with a Galactic halo containing one dominant, LMC-like lump, however some lumpier halos are not ruled out. An upper limit to the total M/L of the Sgr core is 21 in solar units. A second structure that roughly mimics expectations for wrapped, leading Sgr arm debris crosses the trailing arm in the Southern Hemisphere; however, this may also be an unrelated tidal feature. Among the <13 kpc M giants toward the South Galactic Pole are some with large RVs that identify them as halo stars, perhaps part of the Sgr leading arm near the Sun. The positions and RVs of Southern Hemisphere M giants are compared with those of southern globular clusters potentially stripped from the Sgr system and support for association of Pal 2 and Pal 12 with Sgr debris is found. Our discussion includes description of a masked-filtered cross-correlation methodology that achieves better than 1/20 of a resolution element RVs in moderate resolution spectra.Comment: 41 pages, 6 figures, Astronomical Journal, in press (submitted Nov. 24, 2003; tentatively scheduled for July 2004 issue

    EVR-CB-001: An evolving, progenitor, white dwarf compact binary discovered with the Evryscope

    Get PDF
    We present EVR-CB-001, the discovery of a compact binary with an extremely low mass (.21±0.05M.21 \pm 0.05 M_{\odot}) helium core white dwarf progenitor (pre-He WD) and an unseen low mass (.32±0.06M.32 \pm 0.06 M_{\odot}) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low mass He WDs are exotic objects (only about .2%\% of WDs are thought to be less than .3 MM_{\odot}), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (.2R\approx .2 R_{\odot}) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (Teff=18,500±500KT_{\rm eff}=18,500 \pm 500 K), and surface gravity (log(g)=4.96±0.04\log(g)=4.96 \pm 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-RGB, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and TeffT_{\rm eff}-log(g)\log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive.Comment: 14 pages, 11 figures. Published in The Astrophysical Journa

    Variables in the Southern Polar Region Evryscope 2016 Data Set

    Full text link
    The regions around the celestial poles offer the ability to find and characterize long-term variables from ground-based observatories. We used multi-year Evryscope data to search for high-amplitude (≈5% or greater) variable objects among 160,000 bright stars (mv σ limiting magnitude of g = 16 in dark time. In this study, covering all stars 9 M⊙) secondaries with K-dwarf primaries, strong candidates for precision mass–radius measurements

    Evryscope Science: Exploring the Potential of All-Sky Gigapixel-Scale Telescopes

    Full text link
    Low-cost mass-produced sensors and optics have recently made it feasible to build telescope arrays which observe the entire accessible sky simultaneously. In this article, we discuss the scientific motivation for these telescopes, including exoplanets, stellar variability, and extragalactic transients. To provide a concrete example we detail the goals and expectations for the Evryscope, an under-construction 780 MPix telescope which covers 8660 sq. deg. in each 2-minute exposure; each night, 18,400 sq. deg. will be continuously observed for an average of ≈6 hr. Despite its small 61 mm aperture, the system's large field of view provides an étendue which is ∼10% of LSST. The Evryscope, which places 27 separate individual telescopes into a common mount which tracks the entire accessible sky with only one moving part, will return 1%-precision, many-year-length, high-cadence light curves for every accessible star brighter than ∼16th magnitude. The camera readout times are short enough to provide near-continuous observing, with a 97% survey time efficiency. The array telescope will be capable of detecting transiting exoplanets around every solar-type star brighter than mV = 12, providing at least few-millimagnitude photometric precision in long-term light curves. It will be capable of searching for transiting giant planets around the brightest and most nearby stars, where the planets are much easier to characterize; it will also search for small planets nearby M-dwarfs, for planetary occultations of white dwarfs, and will perform comprehensive nearby microlensing and eclipse-timing searches for exoplanets inaccessible to other planet-finding methods. The Evryscope will also provide comprehensive monitoring of outbursting young stars, white dwarf activity, and stellar activity of all types, along with finding a large sample of very-long-period M-dwarf eclipsing binaries. When relatively rare transients events occur, such as gamma-ray bursts (GRBs), nearby supernovae, or even gravitational wave detections from the Advanced LIGO/Virgo network, the array will return minute-by-minute light curves without needing pointing toward the event as it occurs. By coadding images, the system will reach V ∼ 19 in 1-hr integrations, enabling the monitoring of faint objects. Finally, by recording all data, the Evryscope will be able to provide pre-event imaging at 2-minute cadence for bright transients and variable objects, enabling the first high-cadence searches for optical variability before, during and after all-sky events

    Identifying human interactors of SARS-CoV-2 proteins and drug targets for COVID-19 using network-based label propagation

    Full text link
    Motivated by the critical need to identify new treatments for COVID-19, we present a genome-scale, systems-level computational approach to prioritize drug targets based on their potential to regulate host- virus interactions or their downstream signaling targets. We adapt and specialize network label propagation methods to this end. We demonstrate that these techniques can predict human-SARS-CoV-2 protein interactors with high accuracy. The top-ranked proteins that we identify are enriched in host biological processes that are potentially coopted by the virus. We present cases where our methodology generates promising insights such as the potential role of HSPA5 in viral entry. We highlight the connection between endoplasmic reticulum stress, HSPA5, and anti-clotting agents. We identify tubulin proteins involved in ciliary assembly that are targeted by anti-mitotic drugs. Drugs that we discuss are already undergoing clinical trials to test their efficacy against COVID-19. Our prioritized list of human proteins and drug targets is available as a general resource for biological and clinical researchers who are repositioning existing and approved drugs or developing novel therapeutics as anti-COVID-19 agents.First author draf

    Oxford SWIFT IFS and multi-wavelength observations of the Eagle galaxy at z=0.77

    Full text link
    The `Eagle' galaxy at a redshift of 0.77 is studied with the Oxford Short Wavelength Integral Field Spectrograph (SWIFT) and multi-wavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). It was chosen from AEGIS because of the bright and extended emission in its slit spectrum. Three dimensional kinematic maps of the Eagle reveal a gradient in velocity dispersion which spans 35-75 +/- 10 km/s and a rotation velocity of 25 +/- 5 km/s uncorrected for inclination. Hubble Space Telescope images suggest it is close to face-on. In comparison with galaxies from AEGIS at similar redshifts, the Eagle is extremely bright and blue in the rest-frame optical, highly star-forming, dominated by unobscured star-formation, and has a low metallicity for its size. This is consistent with its selection. The Eagle is likely undergoing a major merger and is caught in the early stage of a star-burst when it has not yet experienced metal enrichment or formed the mass of dust typically found in star-forming galaxies.Comment: accepted for publication in MNRA

    Galaxy Zoo: CANDELS barred discs and bar fractions

    Get PDF
    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ~ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 (fbar = 10.7+6.3 -3.5 per cent after correcting for incompleteness) does not significantly evolve.We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion yearsPeer reviewedFinal Accepted Versio
    corecore